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THE EFFECTS O F  THE GALILEAN MOONS ON 

JUPITER FLYBY TRAJECTORIES 

Bernard Kaufman 

ABSTRACT 

The perturbative effects of the four largest moons of Jupiter on a space- 

craft that passes close to Jupiter are investigated using a total of twenty dif- 

ferent encounter trajectories with the planet. An accurate model for the moons 

is utilized in the equations of motion which a re  numerically integrated over the 

time that the probe spends within Jupiter's sphere of influence. It is shown 

that the perturbations caused by the moons do have effects on the post encounter 

heliocentric trajectories which are large enough to make necessary the inclu- 

sion of the moons in any detailed study to be undertaken. On the other hand, 

actual mission objectives such as the time to 10 astronomical units seem to be 

little affected by the presence of the moons. 

A valuable by-product of this study has  been the programming of an accurate 

ephemeris for the Galilean moons which has  not previously been available in this 

country as far as  the author has been able to  determine. 

... 
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INTRODUCTION 

I ' .  

I -  

, .  

The ultimate goals of deep-space investigations a re  the understanding of 

the origin, laws and evolution of our solar system and of the galactic medium 

itself. By means of a probe to Jupiter and beyond into deep space we may ex- 

tend our investigations many fold. Such a probe is currently being planned by 

NASA and will be entering a region never before investigated which will include 

the asteroid belt and the trapped radiation region at Jupiter. 

A probe that is to be sent into deep space requires a tremendous amount of 

energy which with today's boosters can only be accomplished at the expense of 

the final payload. An imaginative way around this problem is to use the gravi- 

tational attraction of a planet. When a probe is in a free fall trajectory about 

the sun in such a manner that it passes within the vicinity of a planet, the tra- 

jectory is considerably changed by this encounter. The changes must, of 

course, depend on the encounter geometry of the probe and the planet. 

This report considers a probe that wil l  utilize a flyby of the planet Jupiter 

to obtain changes in the post encounter heliocentric trajectory. A by-product of 

an encounter with Jupiter is the opportunity to study the planet itself. 

Many authors have treated a Jupiter flyby in the past (for example see 

references 8 thru 13) based on two body motion, however, Jupiter has twelve 

natural satellites, four of which are  rather large and their masses a re  rela- 

tively well known. To the author's knowledge no one has done an integrated 

trajectory study which includes perturbations by the moons of Jupiter. In this 

report  only the four Galilean moons are included since these are the largest and 

their masses a re  well known. The problem of obtaining accurate positions of these 

moons has resulted in the programming of Sampson's method to generate an ephem- 

e r i s  of the moons. Such a program has not previously been available in this coun- 

t ry  as far as can be determined. 
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THE TRANSFER TRAJECTORY 

I 

The first problem that must be considered is that of the transfer trajectory 

from the earth to Jupiter. This will involve the determination of the proper 

launch conditions, parking orbit duration and injection energy to satisfy total 

flight time and nominal targeting at Jupiter. 

Many authors have treated this problem using various methods to obtain a 

solution. References 1 through 7 in the bibliography give some of these methods 

and also indicate the complexity of the problem. 

Since in the present study we are mainly interested in the probe once it is 

in the vicinity of Jupiter, the transfer orbit is only of minor interest. For this 

reason many of the constraints on the trajectory were dropped in order to 

simplify the solution. An approximate transfer trajectory is obtained using 

only the flight time and the positions of the launch and target bodies as con- 

straints. N o  attempt is made to refine the approximate trajectory ir, any way. 

The solution of the transfer trajectory under these restrictions is then solved 

using the wel l  known solution to Lambert's problem. At the target planet the 

trajectory is altered by using the patched conic assumption which states that at 

any given time the probe is affected by one and only one body. At any time the 

gravitational field of a planet is considered to have a force field called the 

sphere of influence whose radius s is given by (reference 1) 

2/5 
S =  (2) RP 

where m and M are the masses of the planet and sun respectively and RP is the 

planet's distance from the sun. 

2 
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During the transfer phase of the probe, the Earth and Jupiter are consid- 

ered to be massless points until the probe comes within the sphere of influence 

of Jupiter. The method used to define th is  conic transfer trajectory is es- 

sentially that found in reference 7 and is described below. 
1 

Solution of the problem of a transfer trajectory necessitates knowing the 

heliocentric position vectors of the Earth ( Te ) at launch date and of Jupiter 

(; ) at arrival date. These vectors can be obtained from an ephemeris or  by 

using two body equations and a given position of the planets at some epoch. 

Figure 1 shows the essential transfer geometry. 

TARGET BODY 

LAUNCH BODY 

<\ TARGt (JUPITER) 

\ 

,EARTH) 

EARTH 

Figure 1 -Launch Geometry 
* 

The heliocentric transfer angle Y in figure 1 can be calculated from Te and 
+ 
r . and is the angle between the position vectors measured in the direction of 

planetary motion. Two other quantities in figure 1 to be defined are the angles 

0 and y . Theta (0)  is the true anomaly of the Earth at launch and y is the 

1 
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heliocentric flight path angle which is the angle between a perpendicular to y e  

and the velocity vector 7 of the probe at launch. The angle y is the parameter 

that we wish to calculate. 

In order that the launch body and target body lie on a single conic orbit it 

is necessary that the following be true 

P r =  
e 1 + e c o s B  

where p = a (1-e 2, is the semi latus rectum. 

From (2) 

p =  r .  [I + e  c o s  B c o s Y - e  s i n e  s i n Y ]  
1 

and from (1) 

From figure (1) 
- - - *  
r e  * v 

Tan y = cot (90 - y) = 
I I 

Therefore 

P 
‘ e  

e s i n  e = -  T a n  y 

substituting (4) and (5) into (3) we obtain 
r r .  ( 1  - c o s  Y)  

e i  

r e  - r .  c o s y +  r .  s i n y T a n y  
P =  

J 1 

(3) 

(4) 

. 
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Equation 6 characterizes the conic section connecting the two radius vectors 

and it is obvious that p is a function only of the m o w n  angle ?' . 
The calculation of y is an interative procedure and only one value of y will 

yield the desired flight time between the two planets. Reference to figure 2 

shows that two transfer trajectories of very short time exist. One is the 

straight line solution and the other bends very close around the sun (hot line). 

A solution lying inside the triangle formed by these two is forbidden since no 

conic section with the sun at a focus exists inthis region. Thus a lower limit 

(ymin) can be calculated for y by using the straight line solution and it is easily 

seen that 

1 r .  c o s Y - r e  
ymin = Tan- '  [ J 

r .  s i n  Y 
1 

The second limit for y is that for a posigrade parabolic orbit for an infinite 

transfer time. Reference to figure 3 shows the typical geometry for this orbit. 

.UTION 

JUPITER 

Figure 2-First Limit for Launch Trajectories 



'. 
JUPITER 

Figure 3-5 econd Limit for Launch Trajectories 

Recall equation (5) 

P e s i n  0 =-Tan y 
r e  

but for this orbit e = 1 and 

2 r  

1 + Tan2 - 
2 
e P =  

Therefore 

or  

e e Tan y 
2 2 e 8 cos2 - t  s i n 2 -  

2 2 
2 8  

2 

s i n - c o s - =  

c o s  - 

- 8 
- cos2- 2 Tan y 

e Tan-= Tan y 
2 

EARTH 



Therefore for a parabola 

~2~ 

From equations (1) and (2) we have 

r e  (1 t cos 8 )  = r [I t cos (et 91 
j 

or  

r e  - r j  = (r  cos  Y - r e )  cos 0 - ( r j  s i n  Y) s i n  6' 
j 

where B is to be eliminated. 

The square root of the sum of the squares of the coefficients of 0 is: 

(r: t rz  - 2 r e r j  cos \Y>ll2 = chord 

thus 

r e  - r .  

chord 
' = cos a cos e - s i n  a s i n  6 

where 

I r j c o s Y - r e  
cos a = 

chord 

r s i n "  

chord 
s i n  a = j 

Thus 

r e  - r 
chord 

j = cos (a e )  = cos p 

and a can be evaluated from eqn (9) 

1 r j  s i n  Y 

j 

a = Tan-' [ 
r c o s Y - r e  
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Theref ore 

and from (8) 

Thus 

e = 2 y .  

Equations (7) and (10) now allow us to compute the transfer trajectory in 

the following manner:* 

the initial guess for y is 

(Ymin i f  Y < 180' 

I - n / 2  i f  Y > 180" 

Y i  = 

and a s tep  size (ss) for y i  is chosen such that 

rn = Yn-l t ss 

and 

From eqn (6) 

r e r j  ( 1 -cos Y )  

r .  s i n Y T a n y n - r . c o s Y t r e  
P= 

1 I 

The velocity is given by 

where pLs is the gravitational constant of the sun. 

*These two limits on y also rule out retrograde transfer orbits 
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Define 

2ps - IJS c 3 = v 2  -- _ - -  
r e  a 

which is twice the total energy per unit mass. 

It can easily be shown that 

45 e s i n  0 = v s i n  y,  

which yields 8 . 
Then 

e = ( I  -!) 1/2 

Appendix A shows how the time ( te ) from periapsis to a true anomaly of 

e can be calculated. In a similar manner the time ( t j )  from periapsis to 

Jupiter can be calculated. Then the flight time is 

A t  = t .  - t e .  
1 

If A t  is within a predetermined tolerance to the desired flight time then 

nothing more need be done. If not, the method of false position allows an 

iterative solution to y for  the desired flight time. The quantities finally ob- 

tained are v ,  a ,  e, 8 and y . 
Using the above calculated y we may calculate the velocity vector 3 by 

0 
decomposing onto two unit vectors ?! and F e  X 7 ) x yt," as in figure 4. 

We obtain 
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Figure 4-Launch Velocity Diagram 

Equation 11 represents the velocity vector of the probe when it is launched 

from the Earth towards Jupiter. This velocity vector along with Y, the helio- 

centric transfer angle, and the position vector of the probe is all that is neces- 

sary to find the position and velocity of the probe at arrival at Jupiter. It is 

easily seen that for this approximate transfer trajectory, the position vector of 

the probe at launch is that of the Earth which is obtainable from the ephemeris. 

Appendix B describes the method used to update the position and velocity of the 

probe to the arrival date at Jupiter. 



UNDISTURBED JUPITER FLYBY AND POST ENCOUNTER TRAJECTORY 

The Sphere of Influence 

As  discussed in the last section the heliocentric velocity vector of the 

transfer orbit can be obtained at the arrival date at Jupiter. Since in this ap- 

proximate scheme Jupiter is considered to be a massless point this arrival 

date is actually an impact time. The problem now is to determine the position 

and velocity of the probe at arrival at the sphere of influence of Jupiter. The 

heliocentric position vector of the probe at impact is obviously that of Jupiter. 

Using the equation for the radius of the sphere of influence ( S )  discussed 

earlier 
2 /s 

s=(;) RP 

the method of false position and two body equations allows us to back up the y 

and ? from impact to a distance S and thus obtain and 3 at entrance to the 

sphere of influence. 

We let and be the heliocentric impact position and velocity. From 

and 3 we can easily compute the semi-major axis a, the eccentricity e ,  the 

mean motion n and the true anomaly Bi at impact. From Bi we find the 

eccentric anomaly E from 

iK-7 s i n  e i  S i n E = -  
1 t e c o s  O i  

C O S  8, + e 

1 t e c o s  Oi 
COS E = 

11 
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Kepler's equation then allows us to compute the time ti from periapsis to Bi 

M = E - e  s i n  E = n t i  

The next step is to start the false position interation by choosing a time 

t = t i  - A t n  

where A t n  can be any arbitrary time. 

Kepler's equation is then solved for E in an interative procedure as 

E = M  t e s i n E n - l  

where E, = M and M = n t  

The true anomaly 8 at time t is then found from 
\ 

fC-2 s i n  E 
1 - e cos E 

s i n  0 = 

J cos E - e 
1 - e c o s E  

c o s  e = 

We now have 6 = e - 8 and using the procedure in Appendix B we may find 

+ the position and velocity at time t . 
Define a function F 
' n '  "n 

F = D - S  (17) 

where D is the distance from Jupiter which is obtained from yn and the ephem- 

er i s  of Jupiter. A new A t n +  is then calculated from 

where of course at the beginning 

A t ,  = 0 

and 

Fn-l = - S. 
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We then return to equation (14) and repeat the procedure until the function F is 

within a predetermined small value. 

The Undisturbed Post Encounter Trajectory 

We have now determined the heliocentric position and velocity and 7 of 

the probe when it enters Jupiter's sphere of influence. The next problem is to 

find the post encounter orbit of the probe after it has passed thru the sphere of 

influence as a function of encounter geometry. References 8 thru 13 describes 

various methods used to obtain the post encounter orbit as a function of en- 

counter conditions. The method described below is that used by the authors of 

references 8 and 9 with some modification to make the method more accurate. 

We have G from above and knowing the injection date of the probe and the time 

to the sphere of influence we can find Gp the heliocentric velocity of Jupiter 

from the ephemeris data. The velocity of the probe with respect to Jupiter at 

entrance to the sphere of influence, 3 i ,  is then given by 

+ + - - t  v ' = v - v  
1 P 

as can be seen from a diagram of the velocity vectors. 

Within the sphere of influence the probe's trajectory will be hyperbolic 

with respect to the planet (reference 1 - see figure 5). We assume that we 

may choose the radius of closest approach r p  of the probe without significantly 

altering the direction or  magnitude of 5;. This is equivalent to assuming that 

while the direction and magnitude of G; are fixed at the calculated values, we 

are still free to choose the point at which the probe pierces the surface of the 

sphere of influence (point A in figure 5). That this assumption is valid is indi- 

cated by Table 1 (from reference 8) where 3: lies along the s'. vector (figure 

5). This table was compiled for  both retrograde and posigrade flybys of Jupiter 

and for a radius of closest approach rp varying from 100,000 to 10,000,000 km. 
These values for r span a far larger region than we are interested in. 

P 
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Figure 5-Encounter Orbit Within the Sphere of Influence 
(From Reference 8) 

For a given asymptote and energy at entrance it will be shown that the entire 

trajectory within the sphere of influence, including rp,  is determined by the 

location of point A. 

A convenient method for specifying the location of point A (reference 8, 9 

and 11) and the radius of closest approach is to select the magnitude of the miss 

vector ( = B in figure 5) and an angle Y , measured between and a fixed 

vector in the planet's orbital plane. This fixed vector T o  is one axis of an 

orthogonal coordinate system whose origin is the planet's center and consists 

of the unit vectors g o  , T o  and so (References 10, 11, 14 and 15). These 

vectors can be defined in the following manner: 
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Table I 

The Velocity Vector as  a Function of Choosing the Entrance 
Point on the Sphere of Influence (from reference 8) 

Posigrade 

1 
5 

10 
50 

100 

Retrograde 

1 
5 

10 
50 

100 

16 1.38295 
161.36287 
161.3403 8 
161.10998 
160.75975 

161.43148 
161.48549 
161.53529 
161.82623 
162.11483 

-.037895218 
- .037826 11 8 
-.037764311 
-.037458739 
-.037179910 

- .037922481 
-.037896001 
-.037877017 
-.037871506 
-.037958746 

13.863505 
13.873625 
13.882193 
13.910651 
13.922712 

13.863560 
13.873828 
13.882264 
13.910774 
13.923062 

+ 
So is assumed to lie alofig the incoming asymptote of the hyperbola; 

--t To = G o  x so 
where go is a unit vector perpendicular to the planet's orbital plane; 

G o  = s o  x 70. 

The vector To lies in the planet's orbital plane and is positive in the direction 

of the planet's motion. We define I to be the angle between T o  and fi measured 

in the direction To to 

coordinate system and its relationship to the impact plane which is perpendicu- 

lar to the incoming asymptote. 

O .  Figure 6 (From ref. 14) shows the geometry of this 
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Figure 6-Planetary Approach Coordinate System and Impact Plane (From Referencel4) 

The total effect of the undisturbed encounter is simply to rotate 3; , thru 

an angle y ,  as illustrated in figure 5, since we must have 

I3;I = I;;\ 

if energy is to be conserved (references 1, 8 and 11). We may easily calculate 

yif B is specified: 

let a be the semi major axis of the hyperbolic orbit. Then from a 

straight forward rearrangement of the energy equation we have 
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where pp is the planet's gravitational constant. From figure 5 and the proper- 

ties of an hyperbola we have the eccentricity 

1 e = -  
cos € 

where E is the half angle between the asymptotes and 

B 
s i n  E = - = - c o s  E .  

a e  a 

Therefore 

B Tan E = -  
a 

now 

y = r r - 2 €  or 

y - 7 7 -  2 Tan-' (!) 
and the radius of closest approach is 

r = a ( l - e ) .  
P 

We have already pointed out how we may choose the point of entry on the 

sphere of influence without altering the direction o r  magnitude of G i .  However, 

this obviously will  change i'i the Jovian centered position vector of the probe. 

We have shown how the parameters B and Y define the entrance point on the 

sphere of influence and allow the calculation of the hyperbolic orbit. We can 

use B and \y to obtain yi  from which we will then be able to easily calculate 

the post encounter orbit at exit from the sphere of influence. We will also use 

v' and the resulting Y; as starting conditions for the calculation of the disturbed 

orbit in the next section. 

4 

1 

Figure 7 shows the relationship of the vectors and angles involved in the 

Go, so, T o  coordinate system. 
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Figure 7-Relationships in the Approach Coordinate 
System (From Reference 8) 

Referring to this figure we see that 
+ SO = 70 cos Y t R O  s i n  Y 

From equations (19) and (20) we find the semi latus rectum 

p = ( a  ( e 2  - 111 

and the true anomaly at entrance to the sphere of influence 

Now from figure 5 we find 

to the sphere of influence 

, the Jovian centered position vector at entrance 

+ 
t ; = s  ~ c o s ( e + ~ - ~ / 2 ) S 0 + c o ~ ( ~ + ~ ) ~ o l  (26) 

Equation (26) however does not represent the true position vector since it was 

assumed that \ represents the incoming asymptote 
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go is therefore not the true asymptote and the miss vector is not quite 

perpendicular to go . The position vector T i  is thus not quite compatible with 

the anomaly 8 .  We may make the entire orbit compatible by using ;l to cal- 

culate a new 6 and a new time in the sphere of influence as follows: 

the semi latus rectum is 

then 

e =,/- 
and finally 

e = (5) - r '  

The procedure in Appendix A then yields the time from perijove to the sphere 

of influence which is one half the total time spent in the sphere. The differences 

in total time spent in the sphere of influence between this new trajectory and 

the approximate trajectory is on the order of 10 minutes when the total time is 

approximately 80 days and the magnitude B of the miss vector changes by less 

than one percent. Since B was one of the parameters which define the en- 

counter orbit and therefore is chosen beforehand, any change in B will slightly 

alter the encounter trajectory. But since the change in B is small any changes 

produced by making the orbit consistent with are negligible. Table 2 shows 

the differences, resulting from this procedure, obtained in the magnitude of the 

miss vector and the total time in the sphere of influence. 



20 

1.26 X 106 

1.26 x lo6 

1.0078 x lo6 

1.0078 x lo6 

5.0389 x lo6 

5.0388 x lo6 

180' 

0' 

.01 X lo6 83.009384 

.01 X lo6 83.009384 

.0078 x lo6 81.453790 

.0078 X lo6 81.453790 

.0389 x lo6 82.912777 

.0388 x lo6 82.912777 

Table I1 

Effects of Approximating the Encounter Trajectory 

l ld  B (km) 

1.25 X lo6 

1.25 X lo6 

1.0 x 106 

1.0 x lo6 
5.0 X lo6 

5.0 X IO6 

New B (km) I A (km) I Old Time (days) I New Time (days) I A (days)l 

83.017077 

83.017128 

81.460214 

81.460217 

82.915892 

82.915926 

.0077 

.0077 

.0064 

.0064 

.0031 

.0031 

With the now determined Jovian centered position and velocity T i  and G i  
and the total time t spent in the sphere of influence we are in a position to find 

r and;; the Jovian centered position and velocity of the probe at exit from 

the sphere (Point A'in figure 5 ) .  To do this one needs an accurate means of 

stepping along the hyperbola. The method used to determine ;i and G ;  is 

described fully in Appendix C. 

- 1  

Using t the time in the sphere of influence we can determine the position 

and velocity of Jupiter from ephemeris information at the time the probe leaves 

the sphere of influence. This position and velocity with ';1 and 7; determines 

the heliocentric position and velocity of the post encounter trajectory. 



THE PERTURBED JUPITER FLYBY 

As pointed out in the previous section the Jovian centered and 

obtained there a re  also to be used as  starting conditions for the disturbed tra- 

jectory. The disturbed trajectory is treated in the standard manner using 

either Cowell's o r  Encke's method. A review of these methods is given below. 

Cowell's Equations of Motion - Perturbations in 

Rectangular Coordinates 

Figure 8 shows three bodies, S , P and P '  with masses M , m and m '  re- 

spectively. The point 0 is a fixed point in space. We consider P to be the 

body which is in motion about S and is disturbed by body P' . 

Figure &Vector Diagram of Cowell's Equations 

21 
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Referring everything to point o we may express the force on S as 

The force on P is 

we define 

- + +  -+ 

r = r  2 - r l  

- + +  -+ 

3 - r l  rl= r 

+ + -+ - +  r - r = r 3 - r 2 - p  

By subtracting equation (27) from (28) and making the above substitutions we 

obtain 

This is Cowell's equation of motion in rectangular coordinates and is now 

referenced to the central body S . If there is more than one disturbing body 

the above equation may be written as: 

Encke's Equations of Motion 

In the above development if the acceleration due to the disturbing bodies is 

of the same or  higher order as that due to the central force field then Cowell's 

procedure is a good one to use (reference 1). If, however, the disturbing ac- 

celeration is small then Cowell's method becomes inefficient. If in this case 



23 

only the differential accelerations a re  integrated then efficiency and accuracy 

may be retained. This procedure is the well-known Encke's method. 

Define 
- + - #  -+ r = r o + 8 r  

where yo is the two body position vector and 8; is the differential correction. 

The equation of motion is then 

where @ is the disturbing acceleration. 

For the two body case we have 

d t 2  r o  

Upon subtracting (32) from (31) we obtain 

Denote 

and 

r 2  - = 1 + 2 q  

r 0" 
Observe that since r 

Now 

and r a r e  nearly equal, 2q will be small. 

- -+ (2, + 8;) * (Yo t 8;) 
- r - r  1 + 2a =- - 
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Theref ore 

and 

ro3 3 / 2  -=  (1 + 2q)- 
r 3  

Then equation (33) becomes upon substituting (34) and (36) 

d26;' - _ -  - h6; t h [1 - (1 + 2q)-3/21 t 
dt2  

Observe that 

-3/2 = q (3 --q l5 + . . . ) = f q  
2 1 - (1 t 2q) 

then 

d26; 

d t 2  
-- - - h6;' t hfq; t 

(3 7) 

Equation (38) is the form of Encke's equations used for computation. However, 

Encke's equations do have a disadvantage that causes computation time to in- 

crease. When the magnitude of 6;in equation (38) becomes large it is neces- 

sary to change the two body vector;, by defining ;, = r if accuracy is to be 

maintained. This process, known as rectification, requires the numerical in- 

tegrator to be restarted with a resulting increase in time. It should be pointed 

out that the disturbing acceleration 

i.e., 

-+ 

is the same as in equation (30) above; 

:= k 2 m i  
i 

and that the only change has been in the 

- 1  - - 1  r .  - r  ( P i  l 3  -+) 
central body term of equation (30). 

(39) 
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Perturbations Due to the Sun 

In the above equation (39) for  the disturbing acceleration we will include 

only the four great moons of Jupiter. Since the distance of the sun from Jupiter 

is so much larger than that of the moons, the term in parentheses in equation 

(39) for the sun will lose accuracy because of the fact that both members are 

almost equal. We may eliminate this problem in a manner similar to Encke's 

procedure by treating the sun as a special case. Reference 16 describes a 

method for solving this problem and the procedure is repeated below. 

SUN M 

JUPITER rn& 

PROBE 

Figure 9-Vector Diagram of Sun, Jupiter and Probe 

Figure 9 shows the geometry of the sun, Jupiter and Probe during the 

encounter phase. By a slight change in notation we may write equation (29) for 

the case where Jupiter is the central body and the sun is the disturbing body: 

o r  

where i! and (7') are defined as in figure 9 and the notational change is obvious 

by comparing figures 8 and 9. 
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Now 

let  

then 

upon substituting this into equation (41) we obtain 

I(;) GI2 = I(;) 1 2  t 21(;)12q 

then 

let 

Substituting equations (43) and (44) into (40) yields . 

= - hi' - (h) [(T) + i'] (1 + 2q3-3/2 t (h) (T) 

; t (h) (;) [-(I t 2q) -3/2 + 11 (45) d2? - = [-h -(h) (1 t 2 ~ ) - ~ / * 1  
dt2 
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now making the same series expansion as before 

-3/2 15 35 2 1 - ( 1  t 2q) 

= fq 

the equations of motion become 

o r  

-- - { ( h ) f q  - (h) - h I  T t (h) f q  (T) d2T 

dt2 

where the term due solely to the central body is h; and the rest is due to the 

presence of the sun. 

Combining the Equations of Motion 

The equations of motion are now combined to include the perturbations due 

to the sun and those due to other bodies. Rewrite equation (46) in the following 

form 

where 4 is the acceleration due to the presence of the sun 

and 

4 = { (h) fq  - (h)}; t (h) f q  (y) 

k2 mq 

r 3  
h =- 

where r is the distance from Jupiter to the probe. 
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To include other bodies we must add to equation (47) the acceleration expressed 

as G in equation (39) 
+ d2t =-h; + + + F  

dt2 
where 

(49) 

and ; is the vector from Jupiter to the probe and ;f is from Jupiter to the dis- 

turbing body. 

Equation (49) represents Cowell's equation of motion. When Encke's pro- 

cedure is wanted the following is used: 

Care must be taken in interpreting equations (48), (49) and (50) since f and q 

have different meanings depending on whether or  not Encke's method is used. 

Integration of the Equations of Motion 

The above equations of motion either (49) or  (50) are integrated over the 

time spent in the sphere of influence by means of a numerical integration 

technique (reference 17). This technique is a fourth order predictor-corrector 

with automatic adjustment of the time step of integration. 

The integration is started at the time of the probe's entrance to the sphere 

of influence and is terminated at exit from the sphere. This termination is 

accomplished by checking the probe's distance from Jupiter until this distance 

becomes equal to the radius of the sphere. The integration is then halted and 

the resulting trajectory is determined. 
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In the actual computer runs made, the use of the above Encke's equation 

(50) more than tripled the computer time when the moons of Jupiter were in- 

cluded as  perturbing bodies. This increase in time was due in part to the 

greater number of calculations required and to the number of rectifications that 

occurred because of the inclusion of the moons. For this reason Cowell's 

method was used exclusively for the results included in this report. Encke's 

method was used as a check in only a few cases to insure that numerical ac- 

curacy was being retained; 



THE GALILEAN SATELLITES OF JUPITER 

On the night of January 7, 1610 Galileo Galilei turned his crude telescope 

toward Jupiter and noticed three small "stars" in the vicinity of and in a straight 

line with the planet. Repeated observations showed that these "stars" moved 

with respect to Jupiter and on January 13 he saw four "stars". Further observa- 

tions proved to him that he had indeed discovered satellites of Jupiter (reference 

18). 

The German astronomer Marius later independently discovered the Galilean 

moons and gave them their names (reference 19) as follows: 

I Io 

I1 Europa 

III Ganymede 

IV Callisto 

Table III is a compilation of the physical data of these satellites and is 

taken in part from reference 20. 

When we consider that the planet Mercury has on the same scale a diam- 

eter of 0.38, compared to 0.394 for Ganymede, we see that these moons are by 

no means small. 

These four satellites have been found to be subject to very strong mutual 

perturbations which cause librations in their orbits about Jupiter. Laplace 

first discovered a resonance relationship between satellites I, 11 and 111 which 

shows that their mean motions are approximately in the proportion of 4:2:1 o r  

in terms of mean longitudes L, - 3L, t 2L, = 180 degrees (reference 21). If one 

30 
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Table 111 

The Galilean Satellites: Astronomical and Physical Data 

Mass (Earth= 1) 

Mean Diameter (Earth = 1) 

Mean Density (H,O = 1) 

Surface Gravity (Earth = 1) 

Velocity of Escape (km/sec) 

Period of Axial Rotation (Days) 

Mean Distance from Planet (km) 

Sidereal Period (Days) 

Mean Orbital Velocity (lun/sec) 

Radius of Sphere of Influence (km) 

I,, I Europa I Ganymede I Callisto 

0.0121 

0.255 

4.03 

0.19 

2.5 

1.77 

421,400 

1.769 

17.37 

7,200 

0.0079 

0.226 

3.78 

0.16 

2.1 

3.55 

670,500 

3.551 

1 3 . E  

9,600 

0.0261 

0.394 

2.35 

0.17 

2.9 

7.15 

1,069,500 

7.155 

10.90 

24,800 

0.0160 

0.350 

2.06 

0.13 

2.4 

16.69 

1,881,200 

16.689 

8.22 

36,100 

of the satellites is disturbed, the motions of the other two adjust so  that this 

relationship is satisfied. Therefore the three satellites cannot be in conjunction 

o r  opposition at the same time (reference 22). 

Little can be found in the literature on an accurate theory of the motions of 

the four moons but accurate positions are obviously necessary if a realistic 

investigation into their effects on the flyby probe is to be made. The theory of 

the moons is quite complex and interest in the theory has only recently begun to 

bring about useful investigations. 

Sampson in 1910 (references 23 and 24) and De Sitter in 1931 (reference 

25) have developed detailed theories to describe the motions of the Galilean 

satellites. Sampson's work is perhaps the best known and includes a rather 

extensive set of tables which are used to determine the position of the moons 

and to predict such physical phenomena as occulations and eclipses. This work 

which has become h o w n  as Sampson's Tables represents a monumental and 
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complex task. Although difficult to use these tables give the times of phenomena 

to 0.000001 days and positions to Oo.OOOOO1 (reference 26). Andoyer (reference 

27) somewhat simplified the procedure by using only the main terms of Samp- 

son's tables and even though this is less accurate, Andoyer's procedure has 

been adopted by the Nautical Almanac Office in their publication of the pheno- 

mena of the moons. 

More recently Ferraz Mello (reference 28) has studied the planar motiorr of 

the Galilean satellites in rectangular coordinates. He shows that the higher 

order harmonics of Jupiter's gravitational potential and the relativity correc- 

tions are negligable. Marsden (reference 29) has studied the motion of the four 

moons using Von Ziepel's method to eliminate the short period terms and to 

reduce the number of degrees of freedom. 

The method used in this report to obtain the positions is a more o r  less  

simplified version of Sampson's method. The model used is one of a slowly 

moving plane common to all four satellites with some plane perturbations. This 

model leads to uncertainties in position of 

300; 6000; 6000; 25000 kilometers 

respectively for satellites I, 11, I11 and IV when compared with Sampson's Tables 

(reference 30). This method was received from Dr. Jean L. Sagnier in Paris, 

France who has spent much time investigating the theory of the moons of 

Jupiter. 

A complete description of the information received from Dr. Sagnier ap- 

pears in Appendix D and a complete and extensive discussion of Sampson's 

theory of the moons can be found in reference 23. The Tables in Appendix D 

are used to determine the positions of the moons which are in turn necessary to 

evaluate the disturbing acceleration in equation (39) above. This method of 

obtaining the positions of the moons has been programmed to generate an 

ephemeris of positions for each of the four moons. Such ephemerides do not 

seem to be easily available elsewhere. 
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simplified method 9O.92885 0.00714796 

Sampson's tables 9O.92550 0.00714794 

I difference I OO.00335 2 x 10-8 

A comparison was made with examples worked out by Sampson in reference 

20. Table IV shows the results of this comparison for satellites I and I11 on two 

different dates. The longitude is measured from the mean equinox of 1900 along 

the mean ecliptic to the ascending node of Jupiter's orbital plane and there- 

after along this plane. The magnitude of the radius vector to the satellite is 

the projection of the radius vector into Jupiter's equatorial plane; and the 

column labeled "tan latitude" is the tangent of the elevation of the radius vector 

to Jupiter's orbital plane. 

.045659 

.045686 

.000027 

Table IV 

Comparison of Sagnier's Method and Sampson's Tables (Jovicentered) 

I Satellite I June 2.156 1909 
~~ 

simplified method 

Sampson's tables r I difference1 

Longitude I Radii (A, U.) I Tan Latitude 

.0191815 

0°.00158 .0003 



ENCOUNTER GEOMETRIES AND MISSIONS USED IN THE STUDY 

Twenty different trajectories were studied to determine the effects of the 

Galilean moons. The launch date for  injection into the transfer orbit from the 

Earth to Jupiter was March 8, 1972 which is one of the dates under considera- 

tion for a Galactic Jupiter Probe currently being planned by NASA (reference 

31). Flight times of 450, 500, 550 and 600 days from the Earth were used along 

with several combinations of the encounter parameters B and Y .  The first 

twelve cases included flight times of 450, 500 and 550 days. The magnitude of 

the miss vector was held constant at 1.25 x 10 

from 0 to 360 degrees in steps of 90 degrees. The remaining 8 cases were 

obtained using a constant value of 180' for Y and values of 1.0 X l o 6  and 1.5 X 

10 

These 8 cases represent the type of encounter geometry that is particularly 

useful in obtaining hyperbolic heliocentric trajectories which are capable of 

achieving far distances in relatively short times. 

km and the angle Y was varied 

km for B , A flight time of 600 days was also included in these cases. 

Some of the first twelve trajectories, particularly those where Y = Oo , are 

also useful for solar probes since they result in eccentricities of almost 1. 

These trajectories can in some cases impact the sun which cannot be done with 

direct flights from the Earth because of the energy required (references 8 and 

11). However for these trajectories it is desirable that at exit from Jupiter's 

sphere of influence the probe be heading toward the sun, i.e. that the heliocentric 

true anomaly be greater than 180°. Otherwise the time required for the probe 

to reach the sun is increased prohibitively. 

34 
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Values of 90' and 270' for \v a r e  very useful in obtaining large distances 

both above and below the ecliptic plane and a little reflection will reveal that 

the two values ought to give symmetrical results (reference 8). Indeed it is 

possible to obtain a distance of 30 a.u. out of the ecliptic as did the case for 

450 days where Y' = 270'. However the time required to reach such distances 

will also be considerable and may rule out the possibility of such a flight being 

undertaken. 

Other types of missions may also be studied if desired. These could in- 

clude obtaining high inclinations of the orbit plane with the ecliptic, maximum 

velocity normal to the ecliptic and many other interesting orbits. Most of these 

would be difficult to attain in terms of the energy requirements without using 

the gravitational attraction of a large planet. This report includes only three 

types of mission objectives: the time required to reach 10 a.u. from the sun, 

the maximum distance attained out of the ecliptic, and close approaches to o r  

impact with the sun. 



RESULTS AND CONCLUSIONS 

The effects of the Galilean moons of Jupiter on the Jovian centered orbit 

are presented in Table V. These results are presented as differences resulting 

from using only the sun as a disturbing body and then using the sun and moons 

as disturbing bodies. The first three columns identify the case with the param- 

eters B in kilometers, Y in degrees and transfer time in days. The next six 

columns are the differences in the Keplerian elements as follows: the semi 

major axis ( a ) ,  eccentricity ( e ) ,  inclination ( i ) ,  true anomaly ( e ) ,  right ascen- 

sion of the ascending node (n) , and arguement of perojove ( m )  . The next column 

is the difference in magnitude of the velocity at exit from Jupiter's sphere of in- 

fluence. As described in aprevious section the integration of the equations of motion 

is terminated when the probe reaches a distance of 48 X lo6 kilometers from 

Jupiter which is the radius of the sphere of influence. Therefore, the magnitude 

of the radius vector is always the same at exit and differences can occur only 

in tangential position and in the velocity vector. The final four columns show 

the closest approach to the Galilean moons. The closest approaches to all four 

moons always occur within a span of 1.5 days and always near perijove of the 

approach trajectory where the probe is moving very fast. 

A quick glance at the A a column shows that the only large differences 

occur in cases 11 and 19. The semi major axis is computed from 
r a = -  
r v2 2 - -  
P 

36 
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and since r is constant, the change in a is dependent only on v. Case 11 

passes Europa by 6100 km and is the closest approach of all the cases. A close 

approach to one o r  more of the moons will of course perturb the trajectory. A 

study was made for case 11 in which one moon at a time was included into the 

equations of motion. Europa by itself caused about half of the perturbation and 

inclusion of Ganymede accounted for almost all of the remaining perturbation. 

However, Ganymede by itself accounted for little of the total perturbation. Hand 

calculations independent of the program substantiated the results obtained when 

a single moon was included. This study shows that a complex dynamical inter- 

action between the bodies is occurring. This complex interaction cannot be 

predicted analytically in an easy way and therefore the perturbation is difficult 

to prove conclusively. 

The change occurring in case 19 is even more difficult to explain. This 

trajectory does come closer to Ganymede than any other trajectory but is well 

outside Ganymede's sphere of influence (see table 111). This case represents a 

600 day transfer trajectory and as such is a relatively low energy Jupiter 

centered trajectory. Because of its low energy it is more sensitive to perturb- 

ing forces. As in case 11 approximate methods tended only to confirm the re- 

sults obtained using one moon at a time. Again the explanation lies in the 

dynamical interaction between the bodies. 

The other 18 cases do not exhibit any abnormally large changes in any of 

the elements. 

I t  therefore appears from Table V that the moons of Jupiter do not repre- 

sent any major perturbative force as far as the Jovian centered trajectory is 

concerned in a majority of the cases. This is consistent with what was originally 

thought when the problem was first undertaken. However, cases 11 and 19 

indicate that under the right dynamical conditions, significant perturbations may 

result that will have to be considered. These perturbations cannot be predicted 

without including the moons. 



38 

Table VI shows the resulting effects of the moons on the heliocentric tra- 

jectories at post encounter. The columns are the same as for Table V except a 

column has been added for the difference in the heliocentric radial distances. 

Large differences occur in the semi major axis for the heliocentric orbits, 

which by virtue of the above equation are attributed to changes in the position 

and velocity magnitudes. Although these are large variations, it must be pointed 

out that the semi major axis is itself large. For  example Case 12 shows a 

change in a of .12 X l o 9  km, where a equals 3 X 10 

turbation of about 4%. This is the largest percentage of all 20 cases. 

km, representing a per- 

Cases 11 and 19 in the heliocentric orbits do not exhibit the large perturba- 

tions that occurred in the Jovicentric orbits. The variations in the semi major 

axis in the heliocentric cases are much less than 1%. Indeed a glance at Table VI 

shows that none of the elements change very much and some exhibit smaller 

changes than the other 18 cases. 

Table VI1 shows the differences resulting in the parameters that are of 

interest for a deep space post Jupiter encounter mission. The first three 

columns are the same as the previous tables. Columns 4 and 5 are found by 

taking the square root of the sum of the squares of the differences in com- 

ponents of the Jovicentric position and velocity vectors respectively. These 

numbers represent the straight line distance and velocity between the two types 

of perturbation runs. Column 6 is the difference in the time spent in Jupiter's 

sphere of influence. Columns 7, 8 and 9 are the respective differences in time 

to reach 10  a.u. from the sun; distances attained out of the ecliptic; and closest 

approach to the sun where these missions are applicable. Again the last 4 

columns are a repetition of the close approaches to the moons. 

Figure 10 (from reference 9) is a contour map of constant times to 10 A.U. 
4 4 

This map was  done for a 500 day transfer time and is in the T and R plane 
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which is defined in a previous section. This plane is commonly called the impact 

plane and is perpendicular to the incoming asymptote. The angle Y is measured 

around the perimeter of the figure and the magnitude of the miss  vector (B) is 

measured by the concentric circles. A flight time of 600 days from post en- 

counter to 10 A.U. can be achieved by any combination of the parameters B 

and P as obtained from the 600 day contour line. Anything inside this line rep- 

resents a flight time of less than 600 days. The launch date for this figure was 

March 10, 1972 which is two days later than the launch date for Case 7 in 

Table V, but this difference will not alter Figure 10 by any appreciable amount. 

Figure 10 was drawn using only a two body determination as outlined in a pre- 

vious section. Case 7 in Table VI1 took 558.990 days to reach 10 A. U. when the 

sun and moons were included as perturbing bodies. The undisturbed time in 

Figure 10 was 556.528 days. From Table VI1 the time difference caused by the 

moons of Jupiter was 0.12 days. Cases 3 and 4 in Table VI may also be located 

on this contour map for B equal to 1.0 X l o 6  and 1.5 X l o 6  km respectively. 

Again it is seen that the influence of the moons is negligible. Also the dif- 

ference between the perturbed and two body determination used in Figure 10 

was less than four days so even the sun makes only a small difference as a 

disturbing body. 

As f a r  as the mission is concerned it is seen that the effects of the moons 

are very small indeed and can be neglected. However as far as determining 

the precise point of exit from the sphere of influence, columns 4 and 5 of 

Table VI1 clearly indicate that the moons do have an effect. These effects could 

be of critical importance depending on the particular post encounter mission 

being contemplated. This along with the changes in the heliocentric semi-major 

axis is sufficient to conclude that for purposes of orbit determination the 

Galilean moons must be included in any realistic study of a Jupiter Flyby. 
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SUMMARY 

The effects of the Galilean moons of Jupiter on a probe passing close to 

Jupiter were studied by using two different perturbative schemes. The first 

included only the sun as a perturbing body and the second included the sun and 

the four moons. Variations obtained from the two models are then the effects 

of the presence of the moons. An integrated trajectory was used only within 

Jupiter's sphere of influence with an approximate two body determination of the 

transfer trajectory between the Earth and Jupiter. 

The numerical integration method was a predictor-corrector scheme with 

automatic adjustment of the step size and automatic e r r o r  control. Due to con- 

siderable savings in machine time all cases were studied by integrating Cowell's 

equations of motion rather than Encke's equations. 

While the total variations due to the Galilean moons in the Jovian centered 

orbital elements of the probe during the Jupiter flyby are fairly small, the 

actual point of exit on the sphere of influence is changed by an appreciable 

amount. Therefore as concerning gross trajectory determination one can es- 

sentially neglect these moons but when accurate position and velocity vectors 

are required, the perturbative effects of the moons most certainly should be in- 

cluded. 

It is shown that the post encounter mission objectives such as time to reach 

10 a.u. from the sun are also little changed due to the presence of the four larger 

moons of Jupiter. However the semi-major axis of the resulting heliocentric 

orbits do undergo large variations. The importance of the perturbations will 
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depend on the exact nature of the post encounter missions that are to be studied 

such as a close approach to a second outer planet. Thus for accurate trajectory 

determination as well as accurate positions and velocities it is advisable to in- 

clude the Galilean moons in the equations of motion. 



APPENDIX A 

TO COMPUTE TIME FROM PERIAPSIS TO A GIVEN TRUE ANOMALY 

This problem is easily solved using two body equations and the solution of 

Kepler's equation yields the desired result immediately. 

Let: a be the semi-major axis 
e the eccentricity 

B the true anomaly 

n the mean motion 

p the semi latus rectum 

t the time from periapsis 

m themeananomaly 

E the eccentric anomaly 

r magnitude of radius vector 

The relationship between B and E can be seen from figure A-1. 

Now X =  5 - ae = a (cos E -  e) = r cos 8 

Y = ~ = b s i n E = r  s i n 8  

b = a m  

also 

a (1 - e 2 )  
1 + e cos 8 

r =  

from (A-1) and (A-2) we obtain 

r = a (1 - e cos  E )  

(A-3) 

(A-4) 
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I '  

I *  
I .. 

from (A-l), (A-2), and (A-4), we obtain 

cos  E - e 
1 - e  c o s E  

cos e =  

,'1- e2 s i n E  
1 - e c o s E  

s i n  0 = 

and this allows us to finally obtain 

T a n g =  /$ Tan - e 
2 2 

(A-5) 

The mean motion n is defined to be 

where p is the gravitational constant of the central body. Using (A-5) to obtain 

E , Kepler's equation states that for an ellipse 

Theref ore 
M = E - e s i n , E  = n t  

M 
n 

t z- 

(A-6) 

(A-7) 

For  an hyperbola, Kepler! s equation becomes 

M z e s i n h E - E  (A-8) 

and again equation (A-7) holds. 

For a parabola, a slightly different treatment is necessary. Equation (A-3) may 

be written as follows: 
a ( 1  - e )  (1 t e) r =  

l t e c o s e  
let q = a (1  - e)  

then upon setting e = 1 

Define 
0 D = fi t a n -  
2 

then 

2q  
1 + cos 8 r =  (A- 9) 

(A-10) 
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The area using equation (A-10) is 

This yields 

(A-11) 

where 

equation (A-11) may be found developed fully in reference 3. Equations (A-5), 

(A-6), (A-7), and (A-11) then allows one to compute the time for any type of orbit. 

Figure A-1-Relationship Between True Anomaly and 
Eccentric Anomaly 



APPENDIX B 

r = f ;'o t g v o  
-+ 

+ I  - + *  + -  
v =  f r o t  g v o  

TO UPDATE THE CARTESIAN COORDINATES OF THE PROBE 
USING AN INCREMENTAL TRUE ANOMALY 

The problem to be solved here is that of determining the position and 

velocity of a probe which is separated from a known position and velocity by an 

increment in the true anomaly. This treatment is essentially that found in 

reference 7. The following notation will be used: 

p gravitational constant of the central body 

r 0 initial position 

Go initial velocity 

-+ 

+ +  
= r o  X v o  momentum vector 

= l I i l  
= e - 0, the incremental true anomaly 

final position 

final velocity 

Since we are considering only two body planer motion we may write the 

following relationships: 

The quantities we wish to find are f g, i y  and 

49 
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r0 

Figure B-1 -Updating the Cartesian Coordinates 

Figure B-1 will be helpful in understanding the geometry of the problem. 

We first compute the momentum vector 

- + +  -+ H =  r o x  vo 

and observe that 

has magnitude equal to r o. 

From figure B-1 we can decompose 

r cos 6 and r s i n s .  

- + +  

onto ;o and Ho ro  and obtain respectively 
h 

We may therefore write for i'! 

1 -+ i i x  T o  
r = F [yo c o s  8 +- s i n  6 

h r O  

and 

--t -+ --t -+ + + 
H x  yo = (yo x vo)  x r o  = v o  (yo * r o )  - r o  (yo * G o )  

then equation (B-2) becomes 



Comparing this with equation (B-1), we see that > 

h 
( 

J g = -  r r o  s i n  6 
h 

(B-4) 

However, the magnitude r in the above equation is still unknown. To solve for 

r we make use of the radius equation 

a(1 - e 2 )  - - P r =  
1 t e c o s 6  l t e c o s 8  

and 

2 h 2  a ( l  - e ) =-  
P 

Thus 

also 

h2 
p(1 t e cos 8) 

r -  

Therefore 

cos 6 = c o s  6 c o s B o - s i n  8 s i n e 0  

Using equations (B-5) and (B-6), we immediately obtain 
h 2  - p r o  

p r o e  
cos 8 ,  = 

Note that from the radius equation we may write 
- + -  

-4 r o  e vo (Yo * ro)  1’2 = * d  
r o  = =  

r O  

- ep6 s i n  8, 
- 

(1 t e COS e o ) 2  

(B-5) 

and by using 
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we obtain 

r o  s i n  8 ,  =- 
Pe 

from above 
-+ + 
r ,  - vo 

r O  
r, = 

which together with equation (B-8) gives 

s i n  8, = 

-. 
hYo - v, 

r o p e  

using equations (B-5), (B-6), (B-7), and (B-10) we obtain 

P r =  

or  

(B-11) h 2  r -  
r o  
- -  

+ p r o  t (h2 - p r o )  c o s  6 - h  (;, * v , )  s i n  6 

Equation (B-11) allows the computation of f and g in equation (B-4) above. 

In an entirely similar manner we may also obtain f and g :  

(B- 12) 
i: = 1 -- P r o  (1 - cos  6 )  

h J 
We may gain as a dividend the time difference corresponding to 6 in the 

following manner: 



which yields 

P e 2  = 1 -_ 
a 

From equations (B-7) and B-10) for 8 we obtain 

Tan e = h(y - G )  
h2 -pr 

then 

and the method of Appendix A will yield the time difference between 0,  and 6 . 



APPENDIX C 

TO FIND f AND OF A PROBE ON AN HYPERBOLIC 
ORBIT SEPARATED FROM yo AND ;o BY TIME A t  

The following method is used to step along an hyperbolic orbit knowing an 

initial position and velocity and Go and a time difference A t  . 
Reference to figure C-1 shows the hyperbola and the geometry of the prob- 

lem to be solved. The axis 7, and 

such that they form a right handed system. 

are unit vectors, origin at the focus and 
77 

Figure C-1 -The Hyperbolic Orbit Geometry 
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From figure C-1 it is obvious that 

+ -+ 
r" = r cos e ie t r s i n  e i 

r )  

and the well known relationships for a hyperbola are: 

r = a ( e c o s h F - 1 )  

e - cosh F 
e cosh F-1 

cos e = 

ye2 - 1 s i n h  F 
e cosh F -  1 

s i n  8 = 

where F is the "hyperbolic" eccentric anomaly. Upon substituting (C-2), (C-3), 

and (C-4) into (C-1), we obtain 

-+ 

r = a(e - cosh  F) t G s i n h F y v  (C-5) 

where p is the semi latus rectum. Differentiating equation (C-5) and noting 

that from Kepler's equation 

1 
e cosh  H -  1 

we obtain 
- 6  -+ 

v = -- 
7 )  

* 
s i n h  F i E  t-cosh F i 

r r 

Equations (C-5) and (C-6) allow the computation of position and velocity 

anywhere along the hyperbola if the parameter F is known since a,  e, and p 

may be easily calculated from to and 3 o. We will use To  and 5 ,  to calculate F 

and to determine the axis 1, and i, . + 

From the Laplace Integral of two body motion we have 

- 1 -  -+ - B o  E=-v x c 0 0 - r o  
P 

where E is a vector in the direction of perihelion and 

- - t +  + 
0 c o  = r o x  v 
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Obviously 

+ E 
% = -  El 

also 

From the energy equation we have 

p= 0 a =  
2 p  - rev; 

then 

where 

The mean motion is then 

and the true anomaly at the initial time is 

The change in the "hyperbolic" mean anomaly is 

AM = n n t  (C-10) 

The value for F, the eccentric anomaly at the initial point is obtained from 

1'2-7 s i n  e o  
e cos 6,+1 

Then the value of the mean anomaly ( M )  at the point 

equation (C - 10) to Kepler's equation evaluated at F 

s i n h  F, = 

is obtained by adding 

M =  e s i n h F o  -F ,  + A M  

o r  

M = e s i n h F - F  (C-11) 



. 
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. 

where F is the unknown eccentric anomaly needed in equations (C-5) and (C-6). 

Equation (C-11) can be solved for F by an interative procedure as follows: 

we form the difference function 

A, = M - e sinh F, t F, (C-12) 

and as a first guess we choose F, = 0 . Using the Newton interative formula we 

have 

o r  
(M - e s i n h  F, t F,) 

1 - e cosh F, Fn+1 = F n  - (C-13) 

when A, becomes small enough we have the required value for F and 

may now be evaluated. 

and 



APPENDIX D 

Received from Dr. J. L. Sagnier, Paris, France 

THE POSITIONS OF JUPITER'S GREAT SATELLITES 

The following tables include: 

The initial values and daily motions of the arguments occurring in the 

subsequent series, expressed in radians when taking into account the 

factor 27. 

The series defining the mean positions of Jupiter's equatorial plane and of 

the orbital planes of the satellites. 

The equatorial true longitudes of the satellites, in radians from 

Sampson's x-axis up to the ascending node of Jupiter's equator on 

Sampson's ( x , y ) -plane, and thereafter along Jupiter's equator. 

The projected values on Jupiter's equator of the radii vectors, expressed 

in A. U. 

The reductions to Sampson's ( x, y )  - plane, to be added to the equatorial 

true longitudes, when the longitudes in Sampson's system are  needed. 

The tangents of the latitudes on Sampson's (x ,y )  - plane. 

The unit of time is always the ephemeris day, initial epochs a re  explicitly 

given whan necessary. The unit of angle is the radian, except for some phase 

angles in the arguments expressed in degrees. The unit of length is the astro- 

nomical unit. 
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A low accuracy determination of the positions of Jupiter's satellites may be 

conveniently obtained by the introduction of the most significant terms of the 

radii vectors and of the equatorial longitudes in the mean orbital planes, whether 

approximated by the Jovian equator o r  not. But the use of the series reducing 

longitudes to Sampson's system and of those giving the latitudes in the same, 

is necessary for a full accuracy computation. 
* 

Arguments of Series 

A r  gt 

$ 1  

42 

43 

4 4  

n l  

" 2  

7T3 

4 
" 
w 

1 

2 

3 

4 

w 

w 

w 

$J 

G 

G 

I-I 

Value for OhTE, 31/12/1959 = 2 n x  

0.9406 5442 8812 5000 

0.0427 5197 0477 7778 

0.3438 0071 0875 0000 

0.7025 5215 8347 2222 

0.3517 7383 1250 0000 

0.4138 9361 2777 7778 

0.3694 6197 9305 5556 

0.9023 3018 4027 7778 

0.9339 4898 5138 8889 

0.8166 4930 4027 7778 

0.4661 1489 5555 5556 

0.9135 1122 8055 5556 

0.8801 0470 7361 1111 

0.6840 6586 4444 4444 

0.5249 4424 2500 0000 

0.0392 7971 0277 7778 

Daily variation = 2 n x  

+ 0.5652 4720 1208 3333 

+ 0.2815 9656 0200 0000 

+ 0.1397 7123 9694 4444 

+ 0.0599 1974 8972 2222 

+ 0.0004 3870 9722 2222 

+ 0.0001 3087 6666 6667 

+ 0.0000 1930 9166 6667 

+ 0.0000 0527 0833 3333 

- 0.0003 7230 6944 4444 

- 0.0000 9083 1388 8889 

- 0.0000 1938 2222 2222 

- 0.0000 0487 6111 1111 

+ 0.0000 0009 9722 2222 

+ 0.0002 3080 8888 8889 

+ 0.0000 9294 3888 8889 

+ 0,0000 0010 6111 1111 

For accurate computations, argument G should be supplemented in each of 

its occurrences by the long period correction: 

277 LO. 9500 0000 x l o e 4  sin 277(0.3696 5917 -0.4492 1389 x [t -1960.01,8,,) 

[t -1960. O1,ay,)l t 0 .9208  3333 x sin2n(0. 4361 4306 t o .  2927 7778x 
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a 
- 

$J 

# 

1 

2 

w 

0 

3 

4 

w 

w 

$J 

2 

3 

4 

w 

w 

w 

48,-2 d1 -w2 

1 
w 

2 G  t 211 -IC, 

Positions of Equatorial and Orbital Planes 

Ci , qi:  In Sampsonts coordinate system, the first two components of a 

vector of modulus 1, perpendicular to the mean orbital plane of the ith satellite 

(for i = 1, 2, 3, 4) or Jupiter's equatorial plane (for i = 0 ) .  

E i  x lo6 = I A  s i n  a ,  -qi x lo6 = .X(-A) cos  a 

i 

3 

4 

the coefficients A and the arguments a being: 

A 

+ 54 140 

+ 54 109 

+ 475 

+ 176 

+ 37 

+ 10 

+53 843 

+ 8 137 

+ 436 

+ 103 

- 25 

- 14 

+ 14 

A 

+ 52 623 

+ 3 106 

+ 608 

- 279 

+ 32 

+ 6 

- 4 

+ 46 661 

+ 4 739 

- 517 

+ 77 

- 38 

+ 11 

10 

+ 9 

- 

a 
~ 

$J 

w 
3 

4 

2 

w 

w 

2 G t 2 I I - $ J  

$J -G 

$J+c 

$J 

4 

3 

w 

w 

2 G t 2 I I - $ J  

211 - $J 

$J -G 

$J +G 

3Gt 2n-4 

. 
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A a A a 

Equatorial True Longitudes 

For the ith satellite, we have: 

v i  = t i  t 277 x lo-* * C A  s i n  a 

A a 

with the following values for A and expressions for a : 

FIRST SATELLITE 

- 1097  

+130 978 

+ 439 

+ 431 

+ 33 

+ 14 

+ 6 

- 439 

+ 369 

4 , -  42 
24, -24,  

3 4 ,  - 3&, 

54, - 54 2 

7 4 ,  -74, 

4 , -  4 ,  
24, - 2 4 ,  

44, - 4 4 ,  

6 4 ,  -64 ,  

+ 39 

+ 6 

+ 1478 

+ 1 1 8 3  

+ 528 

- 2 000 

+ 1094  

+ 2 517 

+ 983 

34, - 34, 

41- = 1  

4 , -  773 

$1-  =4  

e 2  - 2 4 ,  t 77 , 
4, -24 ,  t=, 

4 , - 2 4 ,  tr3 

4* - 2 4 , . + v 4  

44, - 4 4 ,  

- 431 

+ 97 

- 206 

+ 56 

+ 214 

- 97 

i + 267 

- 3 283 

+297 267 

+ 1333  

+ 1503 

+ 106 

+ 150 

+ 19 

- 181 

+ 125 

+ 14 

+ 256 

4 2 -  43 
24 ,  - 24, 
3 4 ,  - 34, 

4 4 ,  - 4 4 ,  

54, - 54, 

74, - 74, 

4 2 -  44 
2 4 ,  - 24, 

34 ,  - 34,  

4 2 -  = 1  

6 4 ,  - 6 4 ,  

SECOND SATELLITE 

+ 2 625 

+ 9 794 

+ 4 119 

+ 3 169 

+ 2 125 

-12 375 

- 4 994 

+ 86 

- 75 

+ 553 

+ 231 

4 2 -  7 7 2  

42- 7T3  

4 2 -  774 

t 2  - 24 ,  t 77, 

4 ,  - 2 4 ,  t 77, 

4 ,  - 24 ,  t n3 

d ,  - 24 ,  t nrq 

34,- 4 4 ,  t nTT; 

34, - 48, t 77 < 

34, - 4 8 ,  tT4  

3$,-  24, - 77: 

+ 94 

-2 908 

- 325 

- 236 

+ 128 

-3 514 

- 544 

+ 256 

+ 92 

+ 156 

2 4 , - 2 c - 2 n  

G 

2c 

5G' -2Ct48" .  6 

4 77, -77 

+ - w ,  

IC, - w 3  

1cI - w 4  

O 2  - w 3  

w, - w 4 
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A a A 

Equatorial True Longitudes (Cont.) 

a A a 

-19 161 

- 303 

- 333 

- 19 

- 8 

- 11 

- 1 1 9 2  

+ 4 075 

+ 286 

+ 67 

+ 19 

' 2  -'3 

2 4 ,  -24,  

44, -4 4 , 
54, -54, 

43 - 4 4  

24, - 2 4 ,  

3 t 3  -34 ,  

4 4 ,  -44 ,  

54 , -54 

3 4 ,  - 3 4 ,  

6 4 ,  - 6 4 ,  

+ 161 

+ 142 

- 636 

- 319 

- 69 

- 19 

41 - 4 4  

24 -24,  

43 - 4 4  

24, -24, 
34 -34 ,  

4 4 ,  -44 ,  

- 83 

+48 289 

+ 47 

+20 492 

- 217 

- 97 

+ 150 

- 1 6 7 8  

- 100 

- 922 

+ 1 8 6 9  

'3 -7T2 

43 -773 

2 4 ,  -2n3 

4 ,  -7T 

24 -34, t 77, 

24 , -34, t 7r4 

4, -2c -2n t7r3 

4, - 24,  t r4 

4 ,  -24, 

4 , - 2 4 ,  +77, 

4 ,  - 2 4 ,  t n ,  

4 

- 5 775 

+234 697 

+ 1 0 7 8  

+ 278 

+ 358* 

+ 1 7 6 4  

+ 814 

-3 736 

- 114 

- 331 

+ 192 

+ 122 

-1 867 

+ 167 

+ 267 

4 , - 2 4 , t . r r ,  
G 

2 G  

5G' -2G t 48". 6 

773 -774 

$ -", 
$ 4 3  

$ - a 4  

w,  - -w  
4 

FOURTH SATELLITE 

4 4  -7T3 

44 -7T4 

2 4 ,  -277, 

4 ,  -24., t T 4  

24 ,  -2G - 2n 

J4  -2G -2rI tT4 

-8 933 

- 322 

+ 100 

- 781 

+ 222 

- 556 

G 

2G 

2G' -G t 173". 17 

5G' -2G t 48". 6 4  

$ - "3 
$--w4 

* H. Andoyer [ Bull. Astr. - 32, 19151 gives the corrected value t 386 for this coefficient. 

. 



63 

Radii Vectors 

(projected on the equator) 
(in astronomical units of length) 

-_ 
r, x lo9 = 2.819 55 [lo6 t 

20 cos (4 , -4 , )  

- 20 cos (34, -34,> 

t 10 cos ( 4 ,  -4,) 
- 15 cos (24, -24,) 

- 45 cos ( 4 ,  ‘77,) 

- 35 cos (d4 -77,) 

- 15 cos (4,  -7r4)1 

- 4125 cos ( 2 4 ,  -24,) 

- 15 COS (44, -44,) 

r3 x lo9 = 7.155 87 [lo6 t 
635 cos (&,-&,) 

t 15 cos (24, -2.e,) 
- 15 cos (34,-34,) 

- 10 cos (34,-3d4) 
- 1515 cos ( 83 - n 3 )  

t 25 cos (&,-t4) 
- 140 cos (24 ,  - 24J 

- 645 cos ( t3 -n4) 3 

r, x lo9 = 4.486 1 2  [ lo6 t 
55 cos (4 , -4 , )  

- 55 cos ( 3 4 ,  -38,) 
- 9430 cos (24, -24,) 

- 30 cos (44, -44,) 
- 85 cos ( 4 ,  -77,) 

- 310 cos (8, -77,) 

- 130 cos (4,-7r4)] 

r4 x lo9 = 12386 25 [ lo6 t 
100 cos ( d 3 - 8 , )  

t 20 cos (24, -244) 

- 7375 cos ( 4 4  -r4) 

-55 cos (t4 -2C-2rIt7r4) 1 

t 180 cos ( 44 -n3)  

-25 cos (2t4-2n4)  
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Additional Terms of the Longitudes in Sampson's System 

Let Avi = 277 x 10'82 A sin a (rad) be the correction to be added to vi in 

order to obtain the true longitude of ithsateUite in Sampson's co-ordinate 

system. 
- 

i 

1 

2 

3 

4 

A 

-11 667 

- 206 

- 78 

-11 553 

- 3 514 

- 186 

- 44 

- 267 

-11 025 

+ 122 

- 1 3 0 3  

- 264 

-18 661 

- 1 7 8 1  

+ 189 

- 83 

- 28* 

a 

24, -2+ 

24, -+ -a1 
24, -'c,-w, 

2 4 , - 2 +  

24, - + - w 2  

24, - + - w 3  

24,-+-a4 

2 4 , - 2 w ,  

2 4 , - 2 +  

24, - + - w 2  

24, - ' c , -w,  

24, - + - w 4  

2 4 , - 2 +  

24 , - + - G;, 
24, - + - a 3  

24, - 2c - 277 

24, - 2 a, 

* Only to be introduced if H. Andoyer's correction in the equatorial longitude is  adopted. 

N. B. To obtain full-accuracy determinations of the positions, v i  should be substituted to ti 
in the arguments a .  
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Latitude Series 

8 being the latitude of the i th satellite, relative to Sampson’s ( x , y) - 
plane: 

t g h i  = 10” Z B  sin P 

i 

1 

- 
2 

- 

B 

+ 541 683 

- 192 

+ 4 759 

+ 1757 

+ 367 

+ 96 

+ 539 020 

- 200 

+ 81 549 

- 140 

+ 4 362 

+ 1028 

- 250 

+ 140 

+ 90 

- 90 

P 
d l - #  

34 ,  - 3$ 

4 ,  - w l  

41 - w 2  

41 - w 3  

41 - w 4  
~~ ~ ~~ 

d 2  - * 
34, - 3 $  

42 - w 2  

4 2  - w l  

42 - w 3  

42 - * 4  

24 ,  -3.e2 + w2 

t 2  t $ J -  2 c - 2 1  

4 ,  - 2$ t -w2 

34, - 2 $ -  w 2  

*Erroneously 3 t 4  -3$ in Sampson’s Tables. 

i 

3 

4 

B 

+ 526 783 

- 181 

+ 31 126 

- 2 792 

+ 6 084 

+ 319 

+ 56 

- 44 

+ 466 987 

- 128 

- 3 84 

+ 47471 

- 5 171 

+ 767 

+ 89 

+ 107 

- 103 

P 

34, - 3$J* 

43- w 3  

.e3-, 4 

e 3  t +- 2G- 2n 

fJ3 - $ J t G  

4 ,  - $ - G  

4 3 - w 2  

. e 4 - +  
34,  - 3 4  

,t4 t * - 2n 

t4 - - w  

44 - w 3  

4 

e 4 t $ - 2 G - 2 1 1  

t4  t # - 3 c  -211 

4 , - P t C  

,t4- +-c 

N.B. TO obtain full accuracy determinations of the positions, v i  should be substituted to .ei, in 
the arguments p! 
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